کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5471045 | 1519387 | 2017 | 27 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Pattern dynamics in a Gierer-Meinhardt model with a saturating term
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مکانیک محاسباتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Gierer-Meinhardt system is a typical mathematical model to describe chemical and biological phenomena. In this paper, the Gierer-Meinhardt model with a saturating term is considered. By the linear stability analysis, we find the parameter area where possible Turing instability can occur. Then the multiple scales method is applied to obtain the amplitude equations at the critical value of Turing bifurcation, which help us to derive parameter space more specific where certain patterns such as spot-like pattern, stripe-like pattern and the coexistence pattern will emerge. Furthermore, the numerical simulations provide an indication of the wealth of patterns that the system can exhibit and the two-dimensional Fourier transform by the image processing interface of GUI from Matlab enables us to gain intensive understanding of these patterns. Besides, the interesting patterns including labyrinthine-like patterns are also numerically observed. All the results obtained reveal the mechanism of morphogenetic processes in adult mesenchymal cells. The patterns obtained corresponding to the patterns induced by morphogens in the vascular mesenchymal cells may play a role in atherosclerotic vascular calcification.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematical Modelling - Volume 46, June 2017, Pages 476-491
Journal: Applied Mathematical Modelling - Volume 46, June 2017, Pages 476-491
نویسندگان
Yongli Song, Rui Yang, Guiquan Sun,