کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5476407 | 1521416 | 2017 | 35 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The implementation of inter-plant heat integration among multiple plants. Part II: The mathematical model
ترجمه فارسی عنوان
پیاده سازی یکپارچه گرمایش بین گیاهان در میان گیاهان متعدد. قسمت دوم: مدل ریاضی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی (عمومی)
چکیده انگلیسی
It is a challenging task to solve a large-scale Inter-Plant Heat Integration (IPHI) problem, especially for simultaneous optimization for intra- and inter-plant heat integration. In the companion paper (Part I), a novel screening algorithm named Nearest and Largest Qrec-based Screening Algorithm (NLQSA) was proposed. It can be used to divide a large-scale IPHI problem into several small ones, each of which includes two or three plants, while keeping the theoretical maximum inter-plant heat recovery potential Qrecmax almost unchanged. NLQSA provides a prior solution before determination of inter-plant Heat Exchanger Network (HEN) configuration for each achieved small IPHI scheme. In this paper, a modified MINLP model with an objective of minimum Total Annual Cost (TAC) is proposed to determine the final inter-plant HEN configurations of achieved segregated IPHI schemes. With the addition of stream data extraction method and NLQSA which were proposed in Part I of this paper series, a complete three-step strategy is established in order to solve the large-scale IPHI problem. Theoretically, a large-scale IPHI problem can be solved no matter how many plants involved. A case study with seven plants is introduced to illustrate the feasibility and effectiveness of the proposed method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy - Volume 135, 15 September 2017, Pages 382-393
Journal: Energy - Volume 135, 15 September 2017, Pages 382-393
نویسندگان
Runrun Song, Chenglin Chang, Qikui Tang, Yufei Wang, Xiao Feng, Mahmoud M. El-Halwagi,