کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5476762 | 1521420 | 2017 | 27 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Deep learning based monitoring of furnace combustion state and measurement of heat release rate
ترجمه فارسی عنوان
نظارت عمیق بر پایه وضعیت احتراق کوره و اندازه گیری میزان انتشار گرما
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
یادگیری عمیق، حالت احتراق نرخ آزاد شدن حرارت، تصویر شعله، شبکه عصبی متقاطع، روش های صاف و تنظیم
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی (عمومی)
چکیده انگلیسی
Effective and efficient monitoring of furnace combustion state and measurement of heat release rate are important and pressing problems in the power industry. However, traditional methods including image segmentation based methods, feature based methods and shallow classifier based methods cannot meet the requirements of highly accurate. These methods are composed with several separating steps, i.e. feature selection and recognition. This paper proposes a novel deep learning based method to identify furnace combustion state and measure heat release rate. With an end-to-end network, feature extraction and classification are integrated into one framework. The deep learning model takes flame images into a multi-layer DNN (Deep Neural Network) or CNN (Convolutional Neural Network) to predict combustion state and heat release rate simultaneously. We also implement smooth and adjustment techniques which can get a trade-off between stability and sensitivity, ensuring both accurate prediction of burner state and fast detection of unstable combustion. The proposed system achieved state-of-the-art 99.9% accuracy in predicting combustion state with a speed of 1Â ms per image. Experimental results show that this method has great potential for practical applications on power plants.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy - Volume 131, 15 July 2017, Pages 106-112
Journal: Energy - Volume 131, 15 July 2017, Pages 106-112
نویسندگان
Zhenyu Wang, Chunfeng Song, Tao Chen,