کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5485091 1523003 2017 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Use of machine learning and data analytics to increase drilling efficiency for nearby wells
ترجمه فارسی عنوان
استفاده از ماشین های یادگیری و تجزیه و تحلیل داده ها برای افزایش بهره وری حفاری برای چاه های مجاور
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم زمین و سیاره ای (عمومی)
چکیده انگلیسی
Data-driven models can be used as an efficient proxy to model complex concepts in engineering. It is common engineering practice to optimize some controllable input parameters in a model to increase efficiency of operations. Machine Learning can be used to predict the rate of penetration (ROP) during drilling to a great accuracy as shown by Hegde, Wallace, and Gray (2015). This paper illustrates the use of machine learning to predict and increase ROP effectively. The machine learning model is first used to predict ROP - with input parameters such as weight on bit (WOB), rotations per minute of the drill bit (RPM), and flow rate of the drilling mud. The input parameters are then modified to increase ROP. This process has been applied to field drilling data from a vertical well consisting of different rocks and formations. The procedure can be used to determine the maximum achievable ROP in each formation, and map out operational guidelines for drilling of pad wells. A post drilling analysis can be conducted for pad wells to cut costs and save time while drilling. This model is very innovative because only surface measured parameters are used, without a priori requirements for geological, laboratory, or drilling data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Natural Gas Science and Engineering - Volume 40, April 2017, Pages 327-335
نویسندگان
, ,