کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5498282 | 1533357 | 2017 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Differentiation of glioma malignancy grade using diffusion MRI
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
تشعشع
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Modern diffusion MR protocols allow one to acquire the multi-shell diffusion data with high diffusion weightings in a clinically feasible time. In the present work we assessed three diffusion approaches based on diffusion and kurtosis tensor imaging (DTI, DKI), and neurite orientation dispersion and density imaging (NODDI) as possible biomarkers for human brain glioma grade differentiation based on the one diffusion protocol. We used three diffusion weightings (so called b-values) equal to 0, 1000, and 2500 s/mm2 with 60 non-coplanar diffusion directions in the case of non-zero b-values. The patient groups of the glioma grades II, III, and IV consist of 8 subjects per group. We found that DKI, and NODDI scalar metrics can be effectively used as glioma grade biomarkers with a significant difference (p < 0.05) for grading between low- and high-grade gliomas, in particular, for glioma II versus glioma III grades, and glioma III versus glioma IV grades. The use of mean/axial kurtosis and intra-axonal fraction/orientation dispersion index metrics allowed us to obtain the most feasible and reliable differentiation criteria. For example, in the case of glioma grades II, III, and IV the mean kurtosis is equal to 0.31, 0.51, and 0.90, and the orientation dispersion index is equal to 0.14, 0.30, and 0.59, respectively. The limitations and perspectives of the biophysical diffusion models based on intra-/extra-axonal compartmentalisation for glioma differentiation are discussed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica Medica - Volume 40, August 2017, Pages 24-32
Journal: Physica Medica - Volume 40, August 2017, Pages 24-32
نویسندگان
Ivan I. Maximov, Aram S. Tonoyan, Igor N. Pronin,