کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5500492 1534260 2017 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nonlinear waves in electromigration dispersion in a capillary
ترجمه فارسی عنوان
امواج غیر خطی در پراکندگی الکترومغناطیس در یک مویرگ
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات زمین شناسی
چکیده انگلیسی
We construct exact solutions to an unusual nonlinear advection-diffusion equation arising in the study of Taylor-Aris (also known as shear) dispersion due to electroosmotic flow during electromigration in a capillary. An exact reduction to a Darboux equation is found under a traveling-wave ansatz. The equilibria of this ordinary differential equation are analyzed, showing that their stability is determined solely by the (dimensionless) wave speed without regard to any (dimensionless) physical parameters. Integral curves, connecting the appropriate equilibria of the Darboux equation that governs traveling waves, are constructed, which in turn are shown to be asymmetric kink solutions (i.e., non-Taylor shocks). Furthermore, it is shown that the governing Darboux equation exhibits bistability, which leads to two coexisting non-negative kink solutions for (dimensionless) wave speeds greater than unity. Finally, we give some remarks on other types of traveling-wave solutions and a discussion of some approximations of the governing partial differential equation of electromigration dispersion.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Wave Motion - Volume 71, June 2017, Pages 42-52
نویسندگان
,