کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5515573 | 1541907 | 2017 | 9 صفحه PDF | دانلود رایگان |

- Dynamics of Bacillus cereus ERBP colonization within roots and shoots were investigated.
- Under airborne formaldehyde, B. cereus ERBP colonized roots and relocalized to the shoots.
- IAA might act as the potent driving force for endophyte relocalization.
- Under formaldehyde-contaminated soil, endophyte colonized roots without moving to the shoots.
- Pollutant phase affected dynamics of endophyte colonization differently.
Deeper understanding of plant-endophyte interactions under abiotic stress would provide new insights into phytoprotection and phytoremediation enhancement. Many studies have investigated the positive role of plant-endophyte interactions in providing protection to the plant against pollutant stress through auxin (indole-3-acetic acid (IAA)) production. However, little is known about the impact of endophytic colonization patterns on plant stress response in relation to reactive oxygen species (ROS) and IAA levels. Moreover, the possible effect of pollutant phase on plant stress response is poorly understood. Here, we elucidated the impact of endophytic colonization patterns on plant stress response under airborne formaldehyde compared to formaldehyde-contaminated soil. ROS, tryptophan and IAA levels in the roots and shoots of endophyte-inoculated and non-inoculated plants in the presence and absence of formaldehyde were measured. Strain-specific quantitative polymerase chain reaction (qPCR) was used to investigate dynamics of endophyte colonization. Under the initial exposure to airborne formaldehyde, non-inoculated plants accumulated more tryptophan in the shoots (compared to the roots) to synthesize IAA. However, endophyte-inoculated plants behaved differently as they synthesized and accumulated more tryptophan in the roots and, hence, higher levels of IAA accumulation and exudation within roots which might act as a signaling molecule to selectively recruit B. cereus ERBP. Under continuous airborne formaldehyde stress, higher levels of ROS accumulation in the shoots pushed the plant to synthesize more tryptophan and IAA in the shoots (compared to the roots). Higher levels of IAA in the shoots might act as the potent driving force to relocalize B. cereus ERBP from roots to the shoots. In contrast, under formaldehyde-contaminated soil, B. cereus ERBP colonized root tissues without moving to the shoots since there was a sharp increase in ROS, tryptophan and IAA levels of the roots without any significant increase in the shoots. Pollutant phase affected endophytic colonization patterns and plant stress responses differently.
266
Journal: Plant Physiology and Biochemistry - Volume 114, May 2017, Pages 1-9