کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5552006 | 1557873 | 2017 | 11 صفحه PDF | دانلود رایگان |

To characterize the role of cAMP-dependent protein kinase (PKA) in regulating vascular Ca2+ current through Cav1.2 channels [ICa1.2], we have documented a marked capacity of the isoquinoline H-89, widely used as a PKA inhibitor, to reduce current amplitude. We hypothesized that the ICa1.2 inhibitory activity of H-89 was mediated by mechanisms unrelated to PKA inhibition. To support this, an in-depth analysis of H-89 vascular effects on both ICa1.2 and contractility was undertaken by performing whole-cell patch-clamp recordings and functional experiments in rat tail main artery single myocytes and rings, respectively. H-89 inhibited ICa1.2 with a pIC50 (M) value of about 5.5, even under conditions where PKA activity was either abolished by both the PKA antagonists KT5720 and protein kinase inhibitor fragment 6-22 amide or enhanced by the PKA stimulators 6-Bnz-cAMP and 8-Br-cAMP. Inhibition of ICa1.2 by H-89 appeared almost irreversible upon washout, was charge carrier- and voltage-dependent, and antagonised by the Cav1.2 channel agonist (S)-(-)-Bay K 8644. H-89 did not alter both potency and efficacy of verapamil, did not affect current kinetics or voltage-dependent activation, while shifting to the left the 50% voltage of inactivation in a concentration-dependent manner. H-89 docked at the α1C subunit in a pocket region close to that of (S)-(-)-Bay K 8644 docking, forming a hydrogen bond with the same, key amino acid residue Tyr-1489. Finally, both high K+- and (S)-(-)-Bay K 8644-induced contractions of rings were fully reverted by H-89. In conclusion, these results indicate that H-89 inhibited vascular ICa1.2 and, consequently, the contractile function through a PKA-independent mechanism. Therefore, caution is recommended when interpreting experiments where H-89 is used to inhibit vascular smooth muscle PKA.
147
Journal: Biochemical Pharmacology - Volume 140, 15 September 2017, Pages 53-63