کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5558345 1561133 2017 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An impedance-based approach using human iPSC-derived cardiomyocytes significantly improves in vitro prediction of in vivo cardiotox liabilities
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست بهداشت، سم شناسی و جهش زایی
پیش نمایش صفحه اول مقاله
An impedance-based approach using human iPSC-derived cardiomyocytes significantly improves in vitro prediction of in vivo cardiotox liabilities
چکیده انگلیسی
Current in vitro approaches to cardiac safety testing typically focus on mechanistic ion channel testing to predict in vivo proarrhythmic potential. Outside of the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative, structural and functional cardiotoxicity related to chronic dosing effects are of great concern as these effects can impact compound attrition. Development and implementation of an in vitro cardiotoxicity screening platform that effectively identifies these liabilities early in the discovery process should reduce costly attrition and decrease preclinical development time. Impedence platforms have the potential to accurately identify structural and functional cardiotoxicity and have sufficient throughput to be included in a multi-parametric optimization approach. Human induced pluripotent stem cell cardiomyocytes (hIPSC-CMs) have demonstrated utility in cardiac safety and toxicity screening. The work described here leverages these advantages to assess the predictive value of data generated by two impedance platforms. The response of hIPSC-CMs to compounds with known or predicted cardiac functional or structural toxicity was determined. The compounds elicited cardiac activities and/or effects on “macro” impedance often associated with overt structural or cellular toxicity, detachment, or hypertrophy. These assays correctly predicted in vivo cardiotox findings for 81% of the compounds tested and did not identify false positives. In addition, internal or literature Cmax values from in vivo studies correlated within 4 fold of the in vitro observations. The work presented here demonstrates the predictive power of impedance platforms with hIPSC-CMs and provides a means toward accelerating lead candidate selection by assessing preclinical cardiac safety earlier in the drug discovery process.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Toxicology and Applied Pharmacology - Volume 329, 15 August 2017, Pages 121-127
نویسندگان
, , , , , , , , , , ,