کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
564571 1451744 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Robust least squares methods under bounded data uncertainties
ترجمه فارسی عنوان
روش های کمترین مربع مقاوم در زیر نامطلوب بودن داده های محدود
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی


• Introducing robust estimation algorithms based on a novel regret formulation.
• Performance tradeoff between best-case and worst-case optimal estimators owing to the regret formulation.
• Demonstrating the superior performance of the introduced novel algorithms.

We study the problem of estimating an unknown deterministic signal that is observed through an unknown deterministic data matrix under additive noise. In particular, we present a minimax optimization framework to the least squares problems, where the estimator has imperfect data matrix and output vector information. We define the performance of an estimator relative to the performance of the optimal least squares (LS) estimator tuned to the underlying unknown data matrix and output vector, which is defined as the regret of the estimator. We then introduce an efficient robust LS estimation approach that minimizes this regret for the worst possible data matrix and output vector, where we refrain from any structural assumptions on the data. We demonstrate that minimizing this worst-case regret can be cast as a semi-definite programming (SDP) problem. We then consider the regularized and structured LS problems and present novel robust estimation methods by demonstrating that these problems can also be cast as SDP problems. We illustrate the merits of the proposed algorithms with respect to the well-known alternatives in the literature through our simulations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Digital Signal Processing - Volume 36, January 2015, Pages 82–92
نویسندگان
, , ,