کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
567974 1452141 2014 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Comparison of many-objective evolutionary algorithms using performance metrics ensemble
ترجمه فارسی عنوان
مقایسه الگوریتم های تکاملی چند هدفه با استفاده از مجموعه معیارهای عملکرد
کلمات کلیدی
گروه معیارهای عملکرد، بسیاری از اهداف بهینه سازی هدف، الگوریتمهای تکاملی، انتخاب دو مسابقه حذف، بسیاری از الگوریتم های تکاملی هدف. معیارهای عملکرد
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزار
چکیده انگلیسی


• A performance assessment on state-of-the-art many-objective evolutionary algorithms.
• Proposed performance metrics ensemble exploits a collection of performance metrics.
• Performance depends on ability to address specific characteristics of the problem.
• Performance depends on ability to handle high-dimensional objective space.

In this study, we have thoroughly researched on performance of six state-of-the-art Multiobjective Evolutionary Algorithms (MOEAs) under a number of carefully crafted many-objective optimization benchmark problems. Each MOEA apply different method to handle the difficulty of increasing objectives. Performance metrics ensemble exploits a number of performance metrics using double elimination tournament selection and provides a comprehensive measure revealing insights pertaining to specific problem characteristics that each MOEA could perform the best. Experimental results give detailed information for performance of each MOEA to solve many-objective optimization problems. More importantly, it shows that this performance depends on two distinct aspects: the ability of MOEA to address the specific characteristics of the problem and the ability of MOEA to handle high-dimensional objective space.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Engineering Software - Volume 76, October 2014, Pages 1–8
نویسندگان
, ,