کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5737900 1614725 2017 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Label-free quantitative proteomics unravels the importance of RNA processing in glioma malignancy
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله
Label-free quantitative proteomics unravels the importance of RNA processing in glioma malignancy
چکیده انگلیسی
Glioma, one of the most common cancers in human, is classified to different grades according to the degrees of malignancy. Glioblastoma (GBM) is known to be the most malignant (Grade IV) whereas low-grade astrocytoma (LGA, Grade II) is relatively benign. The mechanism underlying the pathogenesis and progression of glioma malignancy remains unclear. Here we report a quantitative proteomic study to elucidate the differences between GBM and LGA using liquid chromatography and tandem mass spectrometry followed by label-free quantification. A total of 136 proteins were differentially expressed in GBM for at least five folds in comparison with LGA. Ontological analysis revealed a close correlation between GBM-associated proteins and RNA processing. Interaction network analysis indicated that the GBM-associated proteins in the RNA processing were linked to crucial signaling transduction modulators including epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 1 (STAT1), and mitogen-activated protein kinase 1 (MAPK1), which were further connected to the proteins important for neuronal structural integrity, development and functions. Upregulation of 40S ribosomal protein S5 (RPS5), Ferritin Heavy chain (FTH1) and STAT1, and downregulation of tenascin R (TNR) were validated as representatives by immune assays. In summary, we revealed a panel of GBM-associated proteins and the important modulators centered at the RNA-processing network in glioma malignancy that may become novel biomarkers and help elucidate the underlying mechanism.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neuroscience - Volume 351, 20 May 2017, Pages 84-95
نویسندگان
, , , , , , , , , , , ,