کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5745868 1618782 2017 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Reduced ultraviolet light transmission increases insecticide longevity in protected culture raspberry production
ترجمه فارسی عنوان
کاهش انتقال نور ماوراء بنفش موجب افزایش طول عمر حشره کش در تولید تمشک محافظت شده می شود
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست شیمی زیست محیطی
چکیده انگلیسی


- Photodegradation of insecticides on raspberries under protected culture is unknown.
- Insecticides have up to 60% greater retention when covered in UV-blocking plastics.
- Residues remain higher for up to 14 days under UV-blocking plastics.
- Efficacy of insecticides was higher under UV-blocking plastics.
- Reduced degradation can optimize pesticide use efficiency.

High tunnels are large protective structures used for season extension of many crops, including raspberries. These structures are often covered in plastic films to reduce and diffuse ultraviolet light transmission for pest and disease control, but this may also affect the photodegradation and efficacy of pesticides applied under these tunnels. We compared the residue levels of ten insecticides under three tunnel plastics with varying levels of UV transmission and open field conditions. Raspberry plants placed in research-scale tunnels were treated with insecticides and residues on fruit and foliage were monitored for one or two weeks in early 2015 and early and late 2016. Plastics that reduce UV transmission resulted in 50% greater residues of some insecticides compared to transparent plastics, and 60% compared to uncovered tunnels. This increased persistence of residues was evident within 1 day and remained consistently higher for up to 14 days. This pattern was demonstrated for multiple insecticides, including bifenthrin, esfenvalerate, imidacloprid, thiamethoxam, and spinosad. In contrast, the insecticide malathion degraded rapidly regardless of the plastic treatment, indicating less sensitivity to photodegradation. Bioassays using insecticide-treated leaves that were under UV-blocking plastic revealed higher mortality of the invasive fruit pest, Drosophila suzukii, compared to leaves that were uncovered. This indicates that the activity of pesticides under high tunnels covered in UV-reducing plastics may be prolonged, allowing for fewer insecticide applications and longer intervals between sprays. This information can be used to help optimize pest control in protected culture berry production.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemosphere - Volume 189, December 2017, Pages 454-465
نویسندگان
, , ,