کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5754977 | 1621204 | 2017 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Mapping urban land cover from high spatial resolution hyperspectral data: An approach based on simultaneously unmixing similar pixels with jointly sparse spectral mixture analysis
ترجمه فارسی عنوان
نقشه برداری از پوشش زمینی شهری از داده های فوق العاده ی تفکیکپذیری فضایی بالا: یک رویکرد مبتنی بر پیکسل های مشابه همزمان با مخلوط کردن تجزیه و تحلیل مخلوط طیفی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
کامپیوتر در علوم زمین
چکیده انگلیسی
In remote sensing data exploitation, spectral mixture analysis is commonly used to detect land cover materials and their corresponding proportions present in the observed scene. In recent years, high spatial resolution airborne hyperspectral images have shown their potential for deriving accurate land cover maps. In this paper, a new spectral mixture analysis model for mapping urban environments using high spatial resolution airborne hyperspectral data is proposed. First, non-local self-similarity is exploited to partition the scene into groups of similar pixels. The spectral signals of the pixels in each of these groups are assumed to be comprised of the same endmembers, but with different abundance values. Then, the similar pixels in each group are simultaneously unmixed using a jointly sparse spectral mixture analysis method. The proposed method was applied to map land cover in Pavia city, northern Italy, using airborne ROSIS data. An overall classification accuracy of 97.24% was achieved for the Vegetation - Impervious surface - Soil model. Our experimental results demonstrate that the proposed jointly sparse spectral mixture analysis model is well suited for mapping land cover in urban environments using high resolution hyperspectral data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Remote Sensing of Environment - Volume 196, July 2017, Pages 324-342
Journal: Remote Sensing of Environment - Volume 196, July 2017, Pages 324-342
نویسندگان
Fen Chen, Ke Wang, Tim Van de Voorde, Ting Feng Tang,