کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5758465 1622886 2017 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Field and numerical experiment of an improved subsurface drainage system in Huaibei plain
ترجمه فارسی عنوان
آزمایش میدان و عددی یک سیستم تخلیه زیرزمینی بهبود یافته در دشت هوایبی
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم زراعت و اصلاح نباتات
چکیده انگلیسی
New requirements are put forward for agricultural drainage system due to frequent floods and cultivated land shortage in Huaibei plain, China. The improved subsurface drainage is a more efficient drainage system by laying high permeability materials as filter above the drains based on conventional subsurface drainage whose function is limited by soil hydraulic conductivity. Field experiments was used to evaluate the performance of the improved subsurface drainage preliminarily and numerical experiments was used to explore the capacity of the improved subsurface drainage deeply. Based on calibration and validation by field experiment data, HYDRUS model was used to evaluate the impacts of design parameters of filter hydraulic conductivity, filter width and height, drain spacing and depth on improved subsurface drainage discharge with constant ponding depth. Then, water table depths at different distances from the pipe drain for improved and conventional subsurface drainage were simulated under initial conditions of saturated soil and no surface ponding. Besides, the daily water balance under improved subsurface drainage had been also studied. The result of field experiment showed that the discharge of improved subsurface drainage was about 1.9 times of the conventional subsurface drainage discharge under conditions of same surface ponding depths. The results of numerical experiments indicated that the improved subsurface drainage had a real-time drainage function for the reason that cumulative outflow increased by about 87% than conventional subsurface drainage within 12 h after beginning draining. The improved subsurface drainage lowered water table to an appropriate depth faster than conventional ones, which could provide a more favourable soil moisture condition for crop growth. Furthermore, through daily water balance analysis of improved and conventional subsurface drainage with different rainfalls and initial water table depths, the results showed that subsurface drainage could reduce surface runoff effectively, especially for improved subsurface drainage. Good drainability of the improved subsurface drainage was beneficial to decrease the amount of soil water storage after rainfall and helpful to shorten subsequent draining time of water table drawdown. The research results could provide scientific basis for improved subsurface drainage design and lay a good foundation for its application. Meanwhile, it would be beneficial to enrich agricultural drainage technologies and promote development of agricultural drainage in China.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Agricultural Water Management - Volume 194, December 2017, Pages 24-32
نویسندگان
, , , , ,