کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5771486 1413317 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the covering number of loops
ترجمه فارسی عنوان
در شماره پوشش حلقه ها
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی
A set of proper subgroups is a covering for a group if its union is the whole group. The minimal number of subgroups needed to cover G is called the covering number of G and is denoted by σ(G). It is an interesting problem in group theory to determine integers n such that there exists a group G with σ(G)=n and n−1>1 is not a power of a prime. It is known that there exist integers n>2, which are not covering numbers of a group. So far it has been shown that for n<27 the integers 7, 11, 19, 21, 22 and 25 are not covering numbers of a group. It is an open question if the set of integers with this property is finite or infinite. In this paper an idempotent quasigroup of order n>2 with the property that every two distinct elements generate the entire quasigroup is obtained. With this it is shown that for any integer n>2 there exists a loop whose covering number is n.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expositiones Mathematicae - Volume 34, Issue 4, 2016, Pages 436-447
نویسندگان
, ,