کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5771486 | 1413317 | 2016 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the covering number of loops
ترجمه فارسی عنوان
در شماره پوشش حلقه ها
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
چکیده انگلیسی
A set of proper subgroups is a covering for a group if its union is the whole group. The minimal number of subgroups needed to cover G is called the covering number of G and is denoted by Ï(G). It is an interesting problem in group theory to determine integers n such that there exists a group G with Ï(G)=n and nâ1>1 is not a power of a prime. It is known that there exist integers n>2, which are not covering numbers of a group. So far it has been shown that for n<27 the integers 7, 11, 19, 21, 22 and 25 are not covering numbers of a group. It is an open question if the set of integers with this property is finite or infinite. In this paper an idempotent quasigroup of order n>2 with the property that every two distinct elements generate the entire quasigroup is obtained. With this it is shown that for any integer n>2 there exists a loop whose covering number is n.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expositiones Mathematicae - Volume 34, Issue 4, 2016, Pages 436-447
Journal: Expositiones Mathematicae - Volume 34, Issue 4, 2016, Pages 436-447
نویسندگان
Stephen M. Gagola III, Luise-Charlotte Kappe,