کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5772677 1630638 2017 31 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On a remarkable identity in class numbers of cubic rings
ترجمه فارسی عنوان
در یک هویت قابل توجه در تعداد کلاس از حلقه مکعب
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی
In 1997, Y. Ohno empirically stumbled on an astoundingly simple identity relating the number of cubic rings h(Δ) of a given discriminant Δ, over the integers, to the number of cubic rings hˆ(Δ) of discriminant −27Δ in which every element has trace divisible by 3:(1)hˆ(Δ)={3h(Δ)if Δ>0h(Δ)if Δ<0, where in each case, rings are weighted by the reciprocal of their number of automorphisms. This allows the functional equations governing the analytic continuation of the Shintani zeta functions (the Dirichlet series built from the functions h and hˆ) to be put in self-reflective form. In 1998, J. Nakagawa verified (1). We present a new proof of (1) that uses the main ingredients of Nakagawa's proof (binary cubic forms, recursions, and class field theory), as well as one of Bhargava's celebrated higher composition laws, while aiming to stay true to the stark elegance of the identity.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 176, July 2017, Pages 302-332
نویسندگان
,