| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 5773528 | 1631328 | 2018 | 21 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Kernel-based sparse regression with the correntropy-induced loss
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													آنالیز ریاضی
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												The correntropy-induced loss (C-loss) has been employed in learning algorithms to improve their robustness to non-Gaussian noise and outliers recently. Despite its success on robust learning, only little work has been done to study the generalization performance of regularized regression with the C-loss. To enrich this theme, this paper investigates a kernel-based regression algorithm with the C-loss and â1-regularizer in data dependent hypothesis spaces. The asymptotic learning rate is established for the proposed algorithm in terms of novel error decomposition and capacity-based analysis technique. The sparsity characterization of the derived predictor is studied theoretically. Empirical evaluations demonstrate its advantages over the related approaches.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied and Computational Harmonic Analysis - Volume 44, Issue 1, January 2018, Pages 144-164
											Journal: Applied and Computational Harmonic Analysis - Volume 44, Issue 1, January 2018, Pages 144-164
نویسندگان
												Hong Chen, Yulong Wang,