کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5773613 | 1631341 | 2017 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Compact pseudo-Riemannian homogeneous Einstein manifolds of low dimension
ترجمه فارسی عنوان
منیفولد انیشتین همجنس کوچک کم ابعاد کم
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
چکیده انگلیسی
Let M be pseudo-Riemannian homogeneous Einstein manifold of finite volume, and suppose a connected Lie group G acts transitively and isometrically on M. In this situation, the metric on M induces a bilinear form ãâ
,â
ã on the Lie algebra g of G which is nil-invariant, a property closely related to invariance. We study such spaces M in three important cases. First, we assume ãâ
,â
ã is invariant, in which case the Einstein property requires that G is either solvable or semisimple. Next, we investigate the case where G is solvable. Here, M is compact and M=G/Î for a lattice Î in G. We show that in dimensions less or equal to 7, compact quotients M=G/Î exist only for nilpotent groups G. We conjecture that this is true for any dimension. In fact, this holds if Schanuel's Conjecture on transcendental numbers is true. Finally, we consider semisimple Lie groups G, and find that M splits as a pseudo-Riemannian product of Einstein quotients for the compact and the non-compact factors of G.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Differential Geometry and its Applications - Volume 54, Part B, October 2017, Pages 475-489
Journal: Differential Geometry and its Applications - Volume 54, Part B, October 2017, Pages 475-489
نویسندگان
Wolfgang Globke, Yuri Nikolayevsky,