کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5773716 1631387 2017 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Quasi uniform convexity-Revisited
ترجمه فارسی عنوان
کنجکاوی چهارگانه ارزیابی شده
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی
Quasi uniform convexity (QUC) is a geometric property of Banach spaces, introduced in 1973 by J.R. Calder et al., which implies existence of Chebyshev centers for bounded sets. We extend and strengthen some known results about this property. We show that (QUC) is equivalent to existence and continuous dependence (in the Hausdorff metric) of Chebyshev centers of bounded sets. If X is (QUC) then the space C(K;X) of continuous X-valued functions on a compact K is (QUC) as well. We also show that a sufficient condition introduced by L. Pevac already implies (QUC), and we provide a couple of new sufficient conditions for (QUC). Together with Chebyshev centers, we consider also asymptotic centers for bounded sequences or nets (of points or sets).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Approximation Theory - Volume 223, November 2017, Pages 64-76
نویسندگان
,