کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5773725 1631388 2017 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On Nikol'skii type inequality between the uniform norm and the integral q-norm with Laguerre weight of algebraic polynomials on the half-line
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On Nikol'skii type inequality between the uniform norm and the integral q-norm with Laguerre weight of algebraic polynomials on the half-line
چکیده انگلیسی
We study the Nikol'skii type inequality for algebraic polynomials on the half-line [0,∞) between the “uniform” norm sup{|f(x)|e−x∕2:x∈[0,∞)} and the norm ∫0∞|f(x)e−x∕2|qxαdx1∕q of the space Lαq with the Laguerre weight for 1≤q<∞ and α≥0. It is proved that the polynomial with a fixed leading coefficient that deviates least from zero in the space Lα+1q is the unique extremal polynomial in the Nikol'skii inequality. To prove this result, we use the Laguerre translation. The properties of the norm of the Laguerre translation in the spaces Lαq are studied.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Approximation Theory - Volume 222, October 2017, Pages 40-54
نویسندگان
, , ,