کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5775037 1413573 2017 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Topological invariants and Lipschitz equivalence of fractal squares
ترجمه فارسی عنوان
معادلات توپولوژیک و همبستگی لیپچیتس از مربعات فراکتال
کلمات کلیدی
همبستگی لیپچیتس، مربع فراکتال، کات فهرست، دایره محصور،
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی
Fractal sets typically have very complex geometric structures, and a fundamental problem in fractal geometry is to characterize how “similar” different fractal sets are. The Lipschitz equivalence of fractal sets is often used to classify fractal sets that are geometrically similar. Interesting links between Lipschitz equivalence and algebraic properties of contraction ratios for self-similar sets have been uncovered and widely analyzed. However, with the exception of very few papers, the study of Lipschitz equivalence has largely focused on totally disconnected self-similar sets. For connected self-similar sets this problem becomes rather challenging, even for well known fractal models such as fractal squares. In this paper, we introduce geometric and topological methods to study the Lipschitz equivalence of connected fractal squares. In particular we completely characterize the Lipschitz equivalence of fractal squares of order 3 in which one or two squares are removed. We also discuss the Lipschitz equivalence of fractal squares of more general orders. Our paper is the first study of Lipschitz equivalence for nontrivial connected self-similar sets, and it raises also some interesting questions for the more general setting.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 451, Issue 1, 1 July 2017, Pages 327-344
نویسندگان
, ,