کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5776729 | 1632159 | 2017 | 24 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Error estimates of a high order numerical method for solving linear fractional differential equations
ترجمه فارسی عنوان
برآورد خطا یک روش عددی نظم بالا برای حل معادلات دیفرانسیل خطی خطی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
معادلات دیفرانسیل تقسیم، مشتق مکرر، خطا برآورد شده است
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات محاسباتی
چکیده انگلیسی
In this paper, we first introduce an alternative proof of the error estimates of the numerical methods for solving linear fractional differential equations proposed in Diethelm [6] where a first-degree compound quadrature formula was used to approximate the Hadamard finite-part integral and the convergence order of the proposed numerical method is O(Ît2âα),0<α<1, where α is the order of the fractional derivative and Ît is the step size. We then use a similar idea to prove the error estimates of the high order numerical method for solving linear fractional differential equations proposed in Yan et al. [37], where a second-degree compound quadrature formula was used to approximate the Hadamard finite-part integral and we show that the convergence order of the numerical method is O(Ît3âα),0<α<1. Numerical examples are given to show that the numerical results are consistent with the theoretical results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Numerical Mathematics - Volume 114, April 2017, Pages 201-220
Journal: Applied Numerical Mathematics - Volume 114, April 2017, Pages 201-220
نویسندگان
Zhiqiang Li, Yubin Yan, Neville J. Ford,