کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5824125 1118416 2010 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The structure of the C-terminal helical bundle in glutathione transferase M2-2 determines its ability to inhibit the cardiac ryanodine receptor
موضوعات مرتبط
علوم پزشکی و سلامت داروسازی، سم شناسی و علوم دارویی داروشناسی
پیش نمایش صفحه اول مقاله
The structure of the C-terminal helical bundle in glutathione transferase M2-2 determines its ability to inhibit the cardiac ryanodine receptor
چکیده انگلیسی

Ca2+ release from the sarcoplasmic reticulum through cardiac ryanodine receptors (RyR2) is essential for heart function and is inhibited by the carboxy terminal domain of glutathione transferase M2-2 (GSTM2-C) and derivative fragments containing helix 6. Since a peptide encoding helix 6 alone does not fold into a helix and does not inhibit RyR2 Ca2+ release, the importance of the structure of helix 6 and its role in stabilizing GSTM2-C was tested by inserting potentially destabilizing mutations into this helical segment. GSTM2-C preparations with D156A or L163A mutations were so insoluble that the protein could not be purified. Proteins with F157A and Y260A substitutions were soluble, but had lost their capacity to inhibit both RyR2 Ca2+ release from vesicles and RyR2 channels in bilayers. Circular dichroism studies indicated that these mutated proteins retained their helical secondary structure, although changes in their endogenous tryptophan fluorescence indicated that the F157A and Y160A mutations caused changes in their folding. The single channel studies were conducted with 2 mM ATP and 10 μM Ca2+ in the cytoplasmic solution, mimicking concentrations in the cytosol of cardiac myocytes. Wild type GSTM2-C inhibited RyR2 only at a potential of +40 mV, which may develop during Ca2+ efflux, but not at −40 mV. Together, the results indicate that the structure of helix 6 in the C-terminal fold is critical to the inhibitory action of GSTM2-2 and suggest that therapeutics mimicking this structure may reduce excess Ca2+ release during diastole, which can lead to fatal arrhythmia.

Ca2+ release through cardiac ryanodine receptors is inhibited by the carboxy terminal domain of glutathione transferase M2-2. Therapeutics mimicking this structure may reduce excess Ca2+ release that occurs in arrhythmia.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochemical Pharmacology - Volume 80, Issue 3, 1 August 2010, Pages 381-388
نویسندگان
, , , , ,