کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5839212 1123989 2011 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Deciphering the neuroprotective mechanisms of Bu-yang Huan-wu decoction by an integrative neurofunctional and genomic approach in ischemic stroke mice
موضوعات مرتبط
علوم پزشکی و سلامت داروسازی، سم شناسی و علوم دارویی داروشناسی
پیش نمایش صفحه اول مقاله
Deciphering the neuroprotective mechanisms of Bu-yang Huan-wu decoction by an integrative neurofunctional and genomic approach in ischemic stroke mice
چکیده انگلیسی

Ethnopharmacological relevanceBu-yang Huan-wu decoction (BHD) is a famous traditional Chinese medicine formula that has been used clinically in Asia to treat stroke-induced disability for centuries, but the underlying neuroprotective mechanisms are not fully understood.Aim of the studyIn this study, we aim to investigate the mechanisms of action using an integrative neurofunctional and broad genomics approach.Materials and methodsMale ICR mice were subjected to an acute ischemic stroke by inducing a middle cerebral ischemic/reperfusion (CI/R) injury. To examine whether BHD could extend the lifespan of mice with a stroke, we used oral administration of BHD (0.5 and 1.0 g/kg) twice daily starting from 2 h after ischemia and compared this with vehicle control treatments, recombinant tissue-type plasminogen activator (rt-PA, 10 mg/kg, i.v.), and MK-801 (0.2 mg/kg, i.p.). An integrative neurofunctional and genomic approach was performed to elucidate the underlying molecular mechanisms of BHD.ResultsMore than 80% of the mice died within 2 days after stroke induction in the vehicle control treatment group. However, the survival rates and life-spans of mice treated with BHD, rt-PA and MK-801 were significantly enhanced as compared to the vehicle-treated CI/R group in all three cases. Mice treated with BHD (1.0 g/kg) showed the greatest protective effect across all groups. BHD successfully restored brain function, ameliorated the cerebral infarction, and significantly improved the neurological deficits of the mice with a stroke. BHD also reduced inflammation, oxidative stress, and apoptosis, as well as improved neurogenesis. The molecular impacts of BHD were assessed by genome-wide transcriptome analysis using brains from the CI/R mice. The results showed a total of 377 ischemia-induced probe-sets that were significantly influenced by BHD including 93 probe-sets that were commonly more abundant in BHD-treated and sham mice, and another 284 ischemia-induced probe sets that were suppressed by BHD. Mining the functional modules and genetic networks of these 377 genes revealed a significant upregulation of neuroprotective genes associated with neurogenesis (6 genes) and nervous system development (9 genes), and a significant down-regulation of destructive genes associated with the induction of inflammation (14 genes), apoptosis (15 genes), angiogenesis (11 genes) and blood coagulation (7 genes) by BHD.ConclusionsOur results suggested that BHD is able to protect mice against stroke and extend lifespan primarily through a significant down-regulation of genes involved in inflammation, apoptosis, angiogenesis and blood coagulation, as well as an up-regulation of genes mediating neurogenesis and nervous system development. The changes in expression after treatment with BHD are beneficial after ischemic stroke.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Ethnopharmacology - Volume 138, Issue 1, 31 October 2011, Pages 22-33
نویسندگان
, , , , , , , , , , ,