کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5851056 | 1561785 | 2013 | 7 صفحه PDF | دانلود رایگان |

- BPA up-regulated mRNA and protein levels of ERα and IGF-1R.
- Resveratrol down-regulated ERα, IGF-1R, p-IRS-1, and p-Akt1/2/3, and cyclin D1.
- Resveratrol is a novel candidate for prevention of tumor progression caused by BPA.
Endocrine disrupting chemicals (EDCs) and estrogens appear to promote development of estrogen-dependent cancers, including breast and ovarian carcinomas. In this study, we evaluated the cell viability effect of BPA on BG-1 human ovarian cancer cells, along with the growth inhibitory effect of resveratrol (trans-3,4,5-trihydroxystilbene; RES), a naturally occurring phytoestrogen. In addition, we investigated the underlying mechanism(s) of BPA and RES in regulating the interaction between estrogen receptor alpha (ERα) and insulin-like growth factor-1 receptor (IGF-1R) signals, a non- genomic pathway induced by 17β-estradiol (E2). BPA induced a significant increase in BG-1 cell growth and up-regulated mRNA levels of ERα and IGF-1R. In parallel with its mRNA level, the protein expression of ERα was induced, and phosphorylated insulin receptor substrate-1 (p-IRS-1), phosphorylated Akt1/2/3, and cyclin D1 were increased by BPA or E2. However, RES effectively reversed the BG-1 cell proliferation induced by E2 or BPA by inversely down-regulating the expressions of ERα, IGF-1R, p-IRS-1, and p-Akt1/2/3, and cyclin D1 at both transcriptional and translational levels. Taken together, these results suggest that RES is a novel candidate for prevention of tumor progression caused by EDCs, including BPA via effective inhibition of the cross-talk of ERα and IGF-1R signaling pathways.
Journal: Food and Chemical Toxicology - Volume 59, September 2013, Pages 373-379