کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5891073 | 1153264 | 2013 | 9 صفحه PDF | دانلود رایگان |

Low-density-lipoprotein receptor-related protein 5 (Lrp5) is a co-receptor in Wnt signaling, which plays a critical role in development and maintenance of bone. Osteoporosis-pseudoglioma syndrome, for instance, arises from loss-of-function mutations in Lrp5, and global deletion of Lrp5 in mice results in significantly lower bone mineral density. Since osteocytes are proposed to act as a mechanosensor in the bone, we addressed a question whether a conditional loss-of-function mutation of Lrp5 selective to osteocytes (Dmp1-Cre;Lrp5f/f) would alter responses to ulna loading. Loading was applied to the right ulna for 3Â min (360Â cycles at 2Â Hz) at a peak force of 2.65Â N for 3 consecutive days, and the contralateral ulna was used as a non-loaded control. Young's modulus was determined using a midshaft section of the femur. The results showed that compared to age-matched littermate controls, mice lacking Lrp5 in osteocytes exhibited smaller skeletal size with reduced bone mineral density and content. Compared to controls, Lrp5 deletion in osteocytes also led to a 4.6-fold reduction in Young's modulus. In response to ulna loading, mineralizing surface, mineral apposition rate, and bone formation rate were diminished in mice lacking Lrp5 in osteocytes by 52%, 85%, and 69%, respectively. Collectively, the results support the notion that the loss-of-function mutation of Lrp5 in osteocytes causes suppression of mechanoresponsiveness and reduces bone mass and Young's modulus. In summary, Lrp5-mediated Wnt signaling significantly contributes to maintenance of mechanical properties and bone mass.
⺠Selective inactivation of Lrp5 in osteocytes in mice shows reduced bone mass. ⺠Inactivation of Lrp5 in osteocytes leads to 4.6 times lower Young's modulus in the femur. ⺠Mice lacking Lrp5 in osteocytes present significantly diminished load-driven bone formation.
Journal: Bone - Volume 54, Issue 1, May 2013, Pages 35-43