کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
600343 | 1454301 | 2013 | 8 صفحه PDF | دانلود رایگان |

Pectin is a polymer with well-known mucoadhesive properties. In this study, liposomes were coated with three different types of pectin. Their properties were characterized and their mucoadhesiveness was estimated by a novel in vitro approach. Two different types of commercially available mucin were investigated in order to choose the best candidate for the method. The effect of pH on the properties of the coated liposomes and the interaction with mucin was also studied. The pectin-coated liposomes and the complexes they formed with mucin were characterized by dynamic light scattering (DLS), zeta potential and turbidity measurements. The zeta potential of the liposomes shifted from positive to negative after coating with pectin. They also exhibited larger diameters, and the liposomes coated with HM-pectin were the largest. After the addition of mucin, the zeta potential shifted to a less negative value and the sizes of the pectin-coated liposomes increased. The complexes formed between mucin and the HM-pectin-coated liposomes were the largest, while the smallest were formed with the LM-pectin-coated liposomes. The pH was found to affect the interaction between the coated liposomes and mucin. DLS was conducted on an ALV goniometer to gain information about the diffusivity of the samples, the relative scattered intensities and to obtain an optimal characterization of the size distributions. The results correlated well with measurements from an automatized light scattering instrument (Zetasizer Nano ZS).
Figure optionsDownload as PowerPoint slideHighlights
► Pectin-layer compactness of coated liposomes affects the interaction with mucin.
► The interaction with mucin is most pronounced for liposomes coated with HM-pectin.
► A novel approach for estimating mucoadhesiveness of nanoparticles is established.
Journal: Colloids and Surfaces B: Biointerfaces - Volume 103, 1 March 2013, Pages 158–165