کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
602006 879960 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Model and cell membrane partitioning of perfluorooctanesulfonate is independent of the lipid chain length
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی شیمی کلوئیدی و سطحی
پیش نمایش صفحه اول مقاله
Model and cell membrane partitioning of perfluorooctanesulfonate is independent of the lipid chain length
چکیده انگلیسی

Perfluorooctanesulfonic acid (PFOS) is a persistent environmental pollutant that may cause adverse health effects in humans and animals by interacting with and disturbing of the normal properties of biological lipid assemblies. To gain further insights into these interactions, we investigated the effect of PFOS potassium salt on dimyristoyl- (DMPC), dipalmitoyl- (DPPC) and distearoylphosphatidylcholine (DSPC) model membranes using fluorescence anisotropy measurements and differential scanning calorimetry (DSC) and on the cell membrane of HL-60 human leukemia cells and freshly isolated rat alveolar macrophages using fluorescence anisotropy measurements. PFOS produced a concentration-dependent decrease of the main phase transition temperature (Tm) and an increased peak width (ΔTw) in both the fluorescence anisotropy and the DSC experiments, with a rank order DMPC > DPPC > DSPC. PFOS caused a fluidization of the gel phase of all phosphatidylcholines investigated, but had the opposite effect on the liquid-crystalline phase. The apparent partition coefficients of PFOS between the phosphatidylcholine bilayer and the bulk aqueous phase were largely independent of the phosphatidylcholine chain length and ranged from 4.4 × 104 to 8.8 × 104. PFOS also significantly increased the fluidity of membranes of cells. These findings suggest that PFOS readily partitions into lipid assemblies, independent of their composition, and may cause adverse biological effects by altering their fluidity in a manner that depends on the membrane cooperativity and state (e.g., gel versus liquid-crystalline phase) of the lipid assembly.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Colloids and Surfaces B: Biointerfaces - Volume 76, Issue 1, 1 March 2010, Pages 128–136
نویسندگان
, , , ,