کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6022000 1580662 2014 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Axonal and synaptic failure suppress the transfer of firing rate oscillations, synchrony and information during high frequency deep brain stimulation
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی عصب شناسی
پیش نمایش صفحه اول مقاله
Axonal and synaptic failure suppress the transfer of firing rate oscillations, synchrony and information during high frequency deep brain stimulation
چکیده انگلیسی


- DBS increases synaptic output, but decouples pre- and post-synaptic spiking patterns.
- This decoupling explains the suppression of pallidal β oscillations in PD patients.
- DBS-induced short term depression is a major therapeutic mechanism of DBS for PD.

High frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a widely used treatment for Parkinson's disease, but its effects on neural activity in basal ganglia circuits are not fully understood. DBS increases the excitation of STN efferents yet decouples STN spiking patterns from the spiking patterns of STN synaptic targets. We propose that this apparent paradox is resolved by recent studies showing an increased rate of axonal and synaptic failures in STN projections during DBS. To investigate this hypothesis, we combine in vitro and in vivo recordings to derive a computational model of axonal and synaptic failure during DBS. Our model shows that these failures induce a short term depression that suppresses the synaptic transfer of firing rate oscillations, synchrony and rate-coded information from STN to its synaptic targets. In particular, our computational model reproduces the widely reported suppression of parkinsonian β oscillations and synchrony during DBS. Our results support the idea that short term depression is a therapeutic mechanism of STN DBS that works as a functional lesion by decoupling the somatic spiking patterns of STN neurons from spiking activity in basal ganglia output nuclei.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurobiology of Disease - Volume 62, February 2014, Pages 86-99
نویسندگان
, , , , , , ,