کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6028899 | 1580922 | 2013 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Predicting intrinsic brain activity
ترجمه فارسی عنوان
پیش بینی فعالیت مغزی ذاتی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
MVPAFunctional connectivity - اتصال عملکردی Effective connectivity - اتصال موثرMulti-voxel pattern analysis - تجزیه و تحلیل الگوی چند واکسلfMRI - تصویرسازی تشدید مغناطیسی کارکردیfunctional magnetic resonance imaging - تصویرسازی تشدید مغناطیسی کارکردیResting state - حالت استراحتRegression - رگرسیونMultivariate - چند متغیره
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
علوم اعصاب شناختی
چکیده انگلیسی
Multivariate supervised learning methods exhibit a remarkable ability to decode externally driven sensory, behavioral, and cognitive states from functional neuroimaging data. Although they are typically applied to task-based analyses, supervised learning methods are equally applicable to intrinsic effective and functional connectivity analyses. The obtained models of connectivity incorporate the multivariate interactions between all brain regions simultaneously, which will result in a more accurate representation of the connectome than the ones available with standard bivariate methods. Additionally the models can be applied to decode or predict the time series of intrinsic brain activity of a region from an independent dataset. The obtained prediction accuracy provides a measure of the integration between a brain region and other regions in its network, as well as a method for evaluating acquisition and preprocessing pipelines for resting state fMRI data. This article describes a method for learning multivariate models of connectivity. The method is applied in the non-parametric prediction accuracy, influence, and reproducibility-resampling (NPAIRS) framework, to study the regional variation of prediction accuracy and reproducibility (Strother et al., 2002). The resulting spatial distribution of these metrics is consistent with the functional hierarchy proposed by Mesulam (1998). Additionally we illustrate the utility of the multivariate regression connectivity modeling method for optimizing experimental parameters and assessing the quality of functional neuroimaging data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 82, 15 November 2013, Pages 127-136
Journal: NeuroImage - Volume 82, 15 November 2013, Pages 127-136
نویسندگان
R. Cameron Craddock, Michael P. Milham, Stephen M. LaConte,