کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6039071 | 1188812 | 2008 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Modeling motor connectivity using TMS/PET and structural equation modeling
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
TMSEffective connectivity - اتصال موثرALE - اماTranscranial magnetic stimulation - تحریک مغناطیسی مغزPath analysis - تحلیل مسیرactivation likelihood estimation - تخمین احتمال احتمال فعالیتMeta-analysis - فرا تحلیل SEM - مدل معادلات ساختاری / میکروسکوپ الکترونی روبشیStructural equation modeling - مدلسازی معادلات ساختاریmotor - موتور
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Structural equation modeling (SEM) was applied to positron emission tomographic (PET) images acquired during transcranial magnetic stimulation (TMS) of the primary motor cortex (M1hand). TMS was applied across a range of intensities, and responses both at the stimulation site and remotely connected brain regions covaried with stimulus intensity. Regions of interest (ROIs) were identified through an activation likelihood estimation (ALE) meta-analysis of TMS studies. That these ROIs represented the network engaged by motor planning and execution was confirmed by an ALE meta-analysis of finger movement studies. Rather than postulate connections in the form of an a priori model (confirmatory approach), effective connectivity models were developed using a model-generating strategy based on improving tentatively specified models. This strategy exploited the experimentally imposed causal relations: (1) that response variations were caused by stimulation variations, (2) that stimulation was unidirectionally applied to the M1hand region, and (3) that remote effects must be caused, either directly or indirectly, by the M1hand excitation. The path model thus derived exhibited an exceptional level of goodness (Ï2 = 22.150, df = 38, P = 0.981, TLI = 1.0). The regions and connections derived were in good agreement with the known anatomy of the human and primate motor system. The model-generating SEM strategy thus proved highly effective and successfully identified a complex set of causal relationships of motor connectivity.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 41, Issue 2, June 2008, Pages 424-436
Journal: NeuroImage - Volume 41, Issue 2, June 2008, Pages 424-436
نویسندگان
Angela R. Laird, Jacob M. Robbins, Karl Li, Larry R. Price, Matthew D. Cykowski, Shalini Narayana, Robert W. Laird, Crystal Franklin, Peter T. Fox,