کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6122855 | 1219608 | 2015 | 11 صفحه PDF | دانلود رایگان |

- Clinical MRSA isolates from three infection types were grown in vitro.
- Supernatant was collected and quantitatively analyzed for 8 types of PSMs.
- Skin/soft tissue infection isolates had higher production of most PSM subtypes.
- This finding persisted after removing USA300 strains from the analysis.
- PSMs may play an enhanced role in skin/soft tissue infection pathogenesis.
SummaryBackgroundPhenol-soluble modulins (PSMs) are amphipathic, pro-inflammatory proteins secreted by most Staphylococcus aureus isolates. This study tested the hypothesis that in vitro PSM production levels are associated with specific clinical phenotypes.Methods177 methicillin-resistant S. aureus (MRSA) isolates from infective endocarditis (IE), skin and soft tissue infection (SSTI), and hospital-acquired/ventilator-associated pneumonia (HAP) were matched by geographic origin, then genotyped using spa-typing. In vitro PSM production was measured by high performance liquid chromatography/mass spectrometry. Statistical analysis was performed using Chi-squared or Kruskal-Wallis tests as appropriate.ResultsSpa type 1 was significantly more common in SSTI isolates (62.7% SSTI; 1.7% IE; 16.9% HAP; p < 0.0001) while HAP and IE isolates were more commonly spa type 2 (0% SSTI; 37.3% IE; 40.7% HAP; p < 0.0001). USA300 isolates produced the highest levels of PSMs in vitro. SSTI isolates produced significantly higher quantities of PSMα1-4, PSMβ1, and δ-toxin than other isolates (p < 0.001). These findings persisted when USA300 isolates were excluded from analysis.ConclusionsIncreased in vitro production of PSMs is associated with an SSTI clinical source. This significant association persisted after exclusion of USA300 genotype isolates from analysis, suggesting that PSMs play a particularly important role in the pathogenesis of SSTI as compared to other infection types.
Journal: Journal of Infection - Volume 71, Issue 4, October 2015, Pages 447-457