کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6268443 1614631 2014 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Basic NeuroscienceDynamic spatiotemporal brain analyses using high performance electrical neuroimaging: Theoretical framework and validation
ترجمه فارسی عنوان
تجزیه و تحلیل مغز فضایی مغز دینامیک پایه عصب شناسی با استفاده از نمایش عصبی الکتریکی با کارایی بالا: چارچوب نظری و اعتبار سنجی
کلمات کلیدی
تجزیه و تحلیل توپوگرافی، مدل سازی مغز، هدایت داده، عکاسی الکتریکی الکتریکی، الکترودینامیک، پتانسیل مربوط به رویداد، الکتروانسفالوگرافی، تقسیم بندی تصویر، روش میانگین مربع خطا، ریشه میانگین مربع، متریک فاصله کوزین، بوت استرپینگ، باز کردن
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
چکیده انگلیسی


- Microsegmentation suite that differentiates transition states from stable ERP microstates.
- Differentiation of event-related brain microstates from changes in global field power.
- Integrated within- and between-subject bootstrapping procedures to assess solution robustness.
- Microstate algorithm to promote mapping both which and when brain regions is activated by a task.

BackgroundSince Berger's first EEG recordings in 1929, several techniques, initially developed for investigating periodic processes, have been applied to study non-periodic event-related brain state dynamics.New methodWe provide a theoretical comparison of the two approaches and present a new suite of data-driven analytic tools for the specific identification of the brain microstates in high-density event-related brain potentials (ERPs). This suite includes four different analytic methods. We validated this approach through a series of theoretical simulations and an empirical investigation of a basic visual paradigm, the reversal checkerboard task.ResultsResults indicate that the present suite of data-intensive analytic techniques, improves the spatiotemporal information one can garner about non-periodic brain microstates from high-density electrical neuroimaging data.Comparison with existing method(s)Compared to the existing methods (such as those based on k-clustering methods), the current micro-segmentation approach offers several advantages, including the data-driven (automatic) detection of non-periodic quasi-stable brain states.ConclusionThis suite of quantitative methods allows the automatic detection of event-related changes in the global pattern of brain activity, putatively reflecting changes in the underlying neural locus for information processing in the brain, and event-related changes in overall brain activation. In addition, within-subject and between-subject bootstrapping procedures provide a quantitative means of investigating how robust are the results of the micro-segmentation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Neuroscience Methods - Volume 238, 30 December 2014, Pages 11-34
نویسندگان
, , , ,