کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6308698 1618860 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An updated Quantitative Water Air Sediment Interaction (QWASI) model for evaluating chemical fate and input parameter sensitivities in aquatic systems: Application to D5 (decamethylcyclopentasiloxane) and PCB-180 in two lakes
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست شیمی زیست محیطی
پیش نمایش صفحه اول مقاله
An updated Quantitative Water Air Sediment Interaction (QWASI) model for evaluating chemical fate and input parameter sensitivities in aquatic systems: Application to D5 (decamethylcyclopentasiloxane) and PCB-180 in two lakes
چکیده انگلیسی
The QWASI fugacity mass balance model has been widely used since 1983 for both scientific and regulatory purposes to estimate the concentrations of organic chemicals in water and sediment, given an assumed rate of chemical emission, advective inflow in water or deposition from the atmosphere. It has become apparent that an updated version is required, especially to incorporate improved methods of obtaining input parameters such as partition coefficients. Accordingly, the model has been revised and it is now available in spreadsheet format. Changes to the model are described and the new version is applied to two chemicals, D5 (decamethylcyclopentasiloxane) and PCB-180, in two lakes, Lake Pepin (MN, USA) and Lake Ontario, showing the model's capability of illustrating both the chemical to chemical differences and lake to lake differences. Since there are now increased regulatory demands for rigorous sensitivity and uncertainty analyses, these aspects are discussed and two approaches are illustrated. It is concluded that the new QWASI water quality model can be of value for both evaluative and simulation purposes, thus providing a tool for obtaining an improved understanding of chemical mass balances in lakes, as a contribution to the assessment of fate and exposure and as a step towards the assessment of risk.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemosphere - Volume 111, September 2014, Pages 359-365
نویسندگان
, , , ,