کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6309756 1618876 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Occurrence and removal of selected micropollutants in a water treatment plant
ترجمه فارسی عنوان
پیدایش و حذف میکروپلی دلتا های انتخاب شده در یک گیاه تصفیه آب
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست شیمی زیست محیطی
چکیده انگلیسی
The levels of 14 micropollutants including nine pharmaceuticals, two pesticides, and three endocrine disruptors were measured in a water treatment plant (WTP) in Seoul, Korea. Among the measured micropollutants, 12 (excluding atrazine and triclocarban) were found in the influent and effluent from the WTP, at levels ranging from 2 to 482 ng L−1. The removal efficiencies of the detected micropollutants in the WTP ranged from 6% to 100%. Among them diclofenac, acetaminophen, caffeine, carbamazepine, and 2,4-D were effectively removed (>80%). Metoprolol was unlikely to be removed (6%) in the WTP process. Concentrations of acetaminophen, metoprolol, ibuprofen, and naproxen were higher in winter, while levels of herbicides of 2,4-dichloro-phenoxyacetic acid (2,4-D) were higher in summer. Metoprolol was hardly removed in the water treatment process. Laboratory experiments showed that compounds with log Kow > 2.5 (especially bisphenol-A, 2,4-D, carbamazepine, triclocarban and 4-nonylphenol) were effectively removed by coagulation process, and adsorption effect increased in proportion with hydrophobicity of micropollutants and the turbidity of water. Sunlight photodegradation also effectively removed sulfamethoxazole, sulfamethazine, caffeine, diclofenac, ibuprofen, and acetaminophen, which are photosensitizes. Chlorination was relatively not effective for the removal of micropollutants due to the lower chlorine dosage (2 mg L−1), lower contact time (1 h), and already lower levels of micropollutants at the chlorination stage at WTP. Our results imply that micropollutants during coagulation stage at WTP can be removed not only by coagulation itself, but also by adsorption to clay particle especially for high turbidity water, and by sunlight photodegradation in the areas open to the atmosphere.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemosphere - Volume 95, January 2014, Pages 156-165
نویسندگان
, , , ,