کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6325467 1619747 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Litter chemistry prevails over litter consumers in mediating effects of past steel industry activities on leaf litter decomposition
ترجمه فارسی عنوان
شیمی درمانی بر مصرف کنندگان بستر غلبه می کند تا اثر متقابل فعالیت های صنعتی فولاد گذشته بر تجزیه بستر برگ
کلمات کلیدی
فلزات کمیاب، تجزیه بستر برگ، خصوصیات برگ، کیف چمدان، جوامع زیستی خاک، عملکرد خاک،
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست شیمی زیست محیطی
چکیده انگلیسی


- We evaluated leaf litter decomposition on a Technosol polluted by trace metals.
- Litter produced at the polluted site decomposed faster than unpolluted litter.
- Detritivores were found in higher abundances in the polluted site.
- Litter decomposition rate was similar in the polluted and unpolluted sites.
- Contrary to expectations metal stress does not systematically impact soil functioning.

Soil pollution has adverse effects on the performance and life history traits of microorganisms, plants, and animals, yet evidence indicates that even the most polluted sites can support structurally-complex and dynamic ecosystems. The present study aims at determining whether and how litter decomposition, one of the most important soil ecological processes leaf, is affected in a highly trace-metal polluted site. We postulated that past steel mill activities resulting in soil pollution and associated changes in soil characteristics would influence the rate of litter decomposition through two non-exclusive pathways: altered litter chemistry and responses of decomposers to lethal and sub-lethal toxic stress. We carried out a litter-bag experiment using Populus tremula L. leaf litter collected at, and allowed to decompose in, a trace metal polluted site and in three unpolluted sites used as controls. We designed a fully-factorial transplant experimental design to assess effects of litter origin and exposure site on the rate of litter decomposition. We further determined initial litter chemistry, fungal biomass, mesofauna abundance in litter bags, and the soil macrofauna community. Irrespective of the site of litter exposure, litter originating from the polluted site had a two-fold faster decomposition than litter from the unpolluted sites. Litter chemistry, notably the lignin content, seemed most important in explaining the degradation rate of the leaf litter. Abundance of meso and macro-detritivores was higher at the polluted site than at the unpolluted sites. However, litter decomposition proceeded at similar rates in polluted and unpolluted sites. Our results show that trace metal pollution and associated soil and litter changes do not necessarily weaken consumer control on litter decomposition through lethal and sub-lethal toxic stress.

100

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Science of The Total Environment - Volume 537, 15 December 2015, Pages 213-224
نویسندگان
, , , , , , , , , , , ,