کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6327646 1619769 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Downwash of atmospherically deposited trace metals in peat and the influence of rainfall intensity: An experimental test
ترجمه فارسی عنوان
ضایعات ناشی از فلزات ردیابی جوی در ذغال سنگ نارس و تاثیر شدت بارندگی: یک آزمایش تجربی
کلمات کلیدی
گواهی، پایین دست، تحرک عنصری، ژئوشیمی، ذغال سنگ نارس،
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست شیمی زیست محیطی
چکیده انگلیسی
Accumulation records of pollutant metals in peat have been frequently used to reconstruct past atmospheric deposition rates. While there is good support for peat as a record of relative changes in metal deposition over time, questions remain whether peat archives represent a quantitative or a qualitative record. Several processes can potentially influence the quantitative record of which downwashing is particularly pertinent as it would have a direct influence on how and where atmospherically deposited metals are accumulated in peat. The aim of our study was two-fold: first, to compare and contrast the retention of dissolved Pb, Cu, Zn and Ni in peat cores; and second, to test the influence of different precipitation intensities on the potential downwashing of metals. We applied four 'rainfall' treatments to 13 peat cores over a 3-week period, including both daily (2 or 5.3 mm day− 1) and event-based additions (37 mm day− 1, added over 1 h or over a 10 h rain event). Two main trends were apparent: 1) there was a difference in retention of the added dissolved metals in the surface layer (0-2 cm): 21-85% for Pb, 18-63% for Cu, 10-25% for Zn and 10-20% for Ni. 2) For all metals and both peat types (sphagnum lawn and fen), the addition treatments resulted in different downwashing depths, i.e., as the precipitation-addition increased so did the depth at which added metals could be detected. Although the largest fraction of Pb and Cu was retained in the surface layer and the remainder effectively immobilized in the upper peat (≤ 10 cm), there was a smearing effect on the overall retention, where precipitation intensity exerts an influence on the vertical distribution of added trace metals. These results indicate that the relative position of a deposition signal in peat records would be preserved, but it would be quantitatively attenuated.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Science of The Total Environment - Volumes 506–507, 15 February 2015, Pages 95-101
نویسندگان
, , ,