کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6329102 | 1619780 | 2014 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Applications of stochastic models and geostatistical analyses to study sources and spatial patterns of soil heavy metals in a metalliferous industrial district of China
ترجمه فارسی عنوان
برنامه های کاربردی مدل های تصادفی و تجزیه و تحلیل ژئواستاتسیتی برای مطالعه منابع و الگوهای فضایی فلزات سنگین خاک در یک منطقه صنعتی متالایزر چین
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
فلزات سنگین، آلودگی خاک، نتیجه گیری درخت درخت، مدل توزیع مخلوط محدود تجزیه و تحلیل زمینشناسی،
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم محیط زیست
شیمی زیست محیطی
چکیده انگلیسی
An extensive soil survey was conducted to study pollution sources and delineate contamination of heavy metals in one of the metalliferous industrial bases, in the karst areas of southwest China. A total of 597 topsoil samples were collected and the concentrations of five heavy metals, namely Cd, As (metalloid), Pb, Hg and Cr were analyzed. Stochastic models including a conditional inference tree (CIT) and a finite mixture distribution model (FMDM) were applied to identify the sources and partition the contribution from natural and anthropogenic sources for heavy metal in topsoils of the study area. Regression trees for Cd, As, Pb and Hg were proved to depend mostly on indicators of anthropogenic activities such as industrial type and distance from urban area, while the regression tree for Cr was found to be mainly influenced by the geogenic characteristics. The FMDM analysis showed that the geometric means of modeled background values for Cd, As, Pb, Hg and Cr were close to their background values previously reported in the study area, while the contamination of Cd and Hg were widespread in the study area, imposing potentially detrimental effects on organisms through the food chain. Finally, the probabilities of single and multiple heavy metals exceeding the threshold values derived from the FMDM were estimated using indicator kriging (IK) and multivariate indicator kriging (MVIK). The high probabilities exceeding the thresholds of heavy metals were associated with metalliferous production and atmospheric deposition of heavy metals transported from the urban and industrial areas. Geostatistics coupled with stochastic models provide an effective way to delineate multiple heavy metal pollution to facilitate improved environmental management.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Science of The Total Environment - Volume 490, 15 August 2014, Pages 422-434
Journal: Science of The Total Environment - Volume 490, 15 August 2014, Pages 422-434
نویسندگان
Buqing Zhong, Tao Liang, Lingqing Wang, Kexin Li,