کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6345872 1621233 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Remote sensing of foliar nitrogen in cultivated grasslands of human dominated landscapes
ترجمه فارسی عنوان
سنجش از دور از نیتروژن برگ در گیاهان کشت شده از مناظر تحت سلطه انسان
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات کامپیوتر در علوم زمین
چکیده انگلیسی
Foliar nitrogen (N) in plant canopies is central to a number of important ecosystem processes and continues to be an active subject in the field of remote sensing. Previous estimates of foliar N at the landscape scale have primarily focused on intact forests and grasslands using aircraft imaging spectrometry and various techniques of statistical calibration and modeling. The present study extends this work by examining the potential to estimate the foliar N concentration (%N) of residential, agricultural and other cultivated grassland areas within a suburbanizing watershed in southeastern New Hampshire. These grasslands occupy a relatively small fraction (17.5%) of total land area within the study watershed, but are important to regional biogeochemistry and are highly valued by humans. In conjunction with ground-based vegetation sampling (n = 20 sites with 54 sample plots), we developed partial least squares regression (PLSR) models for predicting mass-based canopy %N across management types using input from airborne and field-based imaging spectrometers. Models yielded strong relationships for predicting canopy %N from both ground- and aircraft-based sensors (r2 = 0.76 and 0.67, respectively) across sites that included turf grass, grazed pasture, hayfields and fallow fields. Similarities in spectral resolution between the sensors used in this study and the proposed HyspIRI mission suggest promise for detecting canopy %N across multiple forms of managed grasslands, with the possible exception of areas containing lawns too small to be captured with HyspIRI's planned 60 m spatial resolution.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Remote Sensing of Environment - Volume 167, 15 September 2015, Pages 88-97
نویسندگان
, , , , ,