کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
634597 | 1456071 | 2013 | 8 صفحه PDF | دانلود رایگان |

A new SrCo0.8Fe0.1Ga0.1O3−δ (SCFG) perovskite material has been successfully synthesized using an EDTA–CA complexing method. The resultant SCFG powder calcined at 900 °C shows perovskite-type crystal structure upon calcination at 900 °C for 5 h. The oxygen-permeating SCFG hollow fiber membrane prepared from the SCFG powder by the phase inversion–sintering method shows a unique asymmetric structure with porous internal–external surfaces and a dense middle layer. This SCFG hollow fiber membrane is able to achieve a good oxygen permeability of 3.5 mL min−1 cm−2 at 950 °C and 0.55 mL min−1 cm−2 at 600 °C when supplied with air using He as a sweep gas. The presence of Ga was found to significantly lower the activation energy of SCFG hollow fiber membrane. The unique asymmetric structure played a critical role in elevating the critical temperature to 900 °C for transition from surface-reaction to bulk-diffusion controlled regime. Furthermore the SCFG hollow fiber membrane is very stable under reducing environment of 20 mL min−1 methane for at least 100 h with an enhanced permeation of 3.4 mL min−1 cm−2 at 900 °C.
Graphical AbstractFigure optionsDownload high-quality image (318 K)Download as PowerPoint slideHighlights
► SrCo0.8Fe0.1Ga0.1O3−δ (SCFG) hollow fiber membrane was successfully developed for oxygen permeation.
► Achieve permeability of 0.55–3.5 mL min−1 cm−2 from 600 to 950 °C with He sweep gas.
► Ga introduction enhances phase stability and decreases membrane activation energy.
► Asymmetric configuration increase transition temperature to bulk-diffusion control.
► Ability to withstand reducing environment under methane for duration of 100 h.
Journal: Journal of Membrane Science - Volume 428, 1 February 2013, Pages 78–85