کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
637090 | 1456143 | 2009 | 7 صفحه PDF | دانلود رایگان |

A simple mathematical model was developed to investigate the utilzation rate of a self-inhibitory substrate in idealised biofilm reactors operating with either counter-diffusion or co-diffusion of oxygen and phenol. This study has implications for the development of membrane-supported biofilm technologies, such as the membrane-aerated biofilm reactor. An unsteady-state formulation of the model was used to investigate the effect of shock loads of phenol on biofilm performance. It was found that the counter-diffusion configuration may be advantageous under high phenol concentrations provided the biofilm thickness is above a critical value. The performance advantage of the counter-diffusion configuration is gained by the presence of an oxygen depleted layer, adjacent to the liquid–biofilm interface which acts as a diffusive barrier to phenol transport to the region of respiratory activity.
Journal: Journal of Membrane Science - Volume 335, Issues 1–2, 15 June 2009, Pages 76–82