کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6371949 1624016 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Complete hierarchies of SIR models on arbitrary networks with exact and approximate moment closure
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم کشاورزی و بیولوژیک (عمومی)
پیش نمایش صفحه اول مقاله
Complete hierarchies of SIR models on arbitrary networks with exact and approximate moment closure
چکیده انگلیسی


- Exact representations of Markovian SIR dynamics on static networks are obtained.
- New network structures which are highly relevant to SIR dynamics are defined.
- Complete hierarchies of approximating systems for SIR dynamics are developed.
- Existing pair-approximation models appear naturally within these hierarchies.

We first generalise ideas discussed by Kiss et al. (2015) to prove a theorem for generating exact closures (here expressing joint probabilities in terms of their constituent marginal probabilities) for susceptible-infectious-removed (SIR) dynamics on arbitrary graphs (networks). For Poisson transmission and removal processes, this enables us to obtain a systematic reduction in the number of differential equations needed for an exact 'moment closure' representation of the underlying stochastic model. We define 'transmission blocks' as a possible extension of the block concept in graph theory and show that the order at which the exact moment closure representation is curtailed is the size of the largest transmission block. More generally, approximate closures of the hierarchy of moment equations for these dynamics are typically defined for the first and second order yielding mean-field and pairwise models respectively. It is frequently implied that, in principle, closed models can be written down at arbitrary order if only we had the time and patience to do this. However, for epidemic dynamics on networks, these higher-order models have not been defined explicitly. Here we unambiguously define hierarchies of approximate closed models that can utilise subsystem states of any order, and show how well-known models are special cases of these hierarchies.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematical Biosciences - Volume 264, June 2015, Pages 74-85
نویسندگان
, ,