کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | ترجمه فارسی | نسخه تمام متن |
---|---|---|---|---|---|
6418247 | 1339325 | 2014 | 18 صفحه PDF | سفارش دهید | دانلود رایگان |
The aim of this article is to develop improved trial methods for the solution of a generalized exterior Bernoulli free boundary problem. At the free boundary, we prescribe the Neumann boundary condition and update the free boundary with the help of the remaining Dirichlet boundary condition. Appropriate update rules are obtained by expanding the state's Dirichlet data at the actual boundary via a Taylor expansion of first and second order. The resulting trial methods converge linearly for both cases, although the trial method based on the second order Taylor expansion is much more robust. Nevertheless, via results of shape sensitivity analysis, we are able to modify the update rules such that their convergence is improved. The feasibility of the proposed trial methods and their performance is demonstrated by numerical results.
Journal: Journal of Mathematical Analysis and Applications - Volume 420, Issue 1, 1 December 2014, Pages 177-194