کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6450251 1415944 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Full length articleDesign and properties of 3D scaffolds for bone tissue engineering
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
Full length articleDesign and properties of 3D scaffolds for bone tissue engineering
چکیده انگلیسی

In this study, the Voronoi tessellation method has been used to design novel bone like three dimension (3D) porous scaffolds. The Voronoi method has been processed with computer design software to obtain 3D virtual isotropic porous interconnected models, exactly matching the main histomorphometric indices of trabecular bone (trabecular thickness, trabecular separation, trabecular number, bone volume to total volume ratio, bone surface to bone volume ratio, etc.). These bone like models have been further computed for mechanical (elastic modulus) and fluid mass transport (permeability) properties. The results show that the final properties of the scaffolds can be controlled during their microstructure and histomorphometric initial design stage. It is also shown that final properties can be tuned during the design stage to exactly match those of trabecular natural bone. Moreover, identical total porosity models can be designed with quite different specific bone surface area and thus, this specific microstructural feature can be used to favour cell adhesion, migration and, ultimately, new bone apposition (i.e. osteoconduction). Once the virtual models are fully characterized and optimized, these can be easily 3D printed by additive manufacturing and/or stereolitography technologies.Statement of SignificanceThe significance of this article goes far beyond the specific objectives on which it is focussed. In fact, it shows, in a guided way, the entire novel process that can be followed to design graded porous implants, whatever its external shape and geometry, but internally tuned to the exact histomorphometric indices needed to match natural human tissues microstructures and, consequently, their mechanical and fluid properties, among others.The significance is even more relevant nowadays thanks to the available new computing and design software that is easily linked to the 3D printing new technologies. It is this transversality, at the frontier of different disciplines, the main characteristic that gives this article a high scientific impact and interest to a broaden audience.

231

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Biomaterialia - Volume 42, 15 September 2016, Pages 341-350
نویسندگان
, , , ,