کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
645241 | 1457141 | 2015 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An intelligent approach for cooling radiator fault diagnosis based on infrared thermal image processing technique
ترجمه فارسی عنوان
یک روش هوشمند برای تشخیص خطا رادیاتور بر اساس تکنیک پردازش تصویر حرارتی مادون قرمز
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
رادیاتور خنک کننده نظارت بر وضعیت، تصاویر حرارتی، تبدیل موجک گسسته، الگوریتم ژنتیک، شبکه های عصبی مصنوعی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
جریان سیال و فرایندهای انتقال
چکیده انگلیسی
This research presents a new intelligent fault diagnosis and condition monitoring system for classification of different conditions of cooling radiator using infrared thermal images. The system was adopted to classify six types of cooling radiator faults; radiator tubes blockage, radiator fins blockage, loose connection between fins and tubes, radiator door failure, coolant leakage, and normal conditions. The proposed system consists of several distinct procedures including thermal image acquisition, image pre-processing, image processing, two-dimensional discrete wavelet transform (2D-DWT), feature extraction, feature selection using a genetic algorithm (GA), and finally classification by artificial neural networks (ANNs). The 2D-DWT is implemented to decompose the thermal images. Subsequently, statistical texture features are extracted from the original images and are decomposed into thermal images. The significant selected features are used to enhance the performance of the designed ANN classifier for the 6 types of cooling radiator conditions (output layer) in the next stage. For the tested system, the input layer consisted of 16 neurons based on the feature selection operation. The best performance of ANN was obtained with a 16-6-6 topology. The classification results demonstrated that this system can be employed satisfactorily as an intelligent condition monitoring and fault diagnosis for a class of cooling radiator.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Thermal Engineering - Volume 87, 5 August 2015, Pages 434-443
Journal: Applied Thermal Engineering - Volume 87, 5 August 2015, Pages 434-443
نویسندگان
Amin Taheri-Garavand, Hojjat Ahmadi, Mahmoud Omid, Seyed Saeid Mohtasebi, Kaveh Mollazade, Alan John Russell Smith, Giovanni Maria Carlomagno,