کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6470522 1424111 2017 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Towards flexible lithium-sulfur battery from natural cotton textile
ترجمه فارسی عنوان
به سمت انعطاف پذیر باتری لیتیوم گوگرد با پارچه نساجی طبیعی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
چکیده انگلیسی


- Tubular activated cotton textile (ACT) was derived from natural cotton textile.
- ACT was used as sulfur host to prepare ACT/S composite.
- Reduced graphene oxide (rGO) nanosheets were coated around ACT.
- KOH-activated ACT was used as interlayer between cathode and separator.
- The assembled cell exhibited an exceptional capacity and rate performance.

The future wearable/portable electronics need flexible power sources with higher storage capability. Lithium-sulfur (Li-S) battery is very promising for the development of next-generation high-energy battery due to its ultra-high theoretical capacity. However, the development of flexible Li-S battery has been plagued by its fast capacity decay and lack of suitable flexible substrates. Herein, a conductive activated cotton textile (ACT) with porous tubular structure was first derived from natural cotton textile to load sulfur, which was further wrapped with partially reduced graphene oxide (ACT/S-rGO) to immobilize lithium polysulfides. Meanwhile, the partially reduced graphene oxide nanosheets could be served as a conductive coating, which further mitigated the poor conductivity of sulfur and enabled fast electron transportation along ACT fibers. Furthermore, a KOH-activated ACT with micropore size distribution was inserted between cathode and separator to mitigate the “shuttle effect” of polysulfides. Finally, the assembled ACT/S-rGO cathode with porous ACT interlayer exhibited an exceptional rate capability and durable cyclic performance (with a well-retained capacity of ∼1016 mAh g−1 even after 200 cycles). A flexible Li-S cell with ACT/S-rGO as a cathode was also assembled to demonstrate its superior potential as flexible power sources for future wearable electronic devices.

166

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electrochimica Acta - Volume 246, 20 August 2017, Pages 507-516
نویسندگان
, , , ,