کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6470973 1424110 2017 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
NiCo2O4-decorated porous carbon nanosheets for high-performance supercapacitors
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
NiCo2O4-decorated porous carbon nanosheets for high-performance supercapacitors
چکیده انگلیسی


- For the first time, an easy, one-pot hydrothermal method is provoked for the synthesis of NC-ECN.
- The as-prepared materials possesses unique physic-chemical properties.
- The NC-ECN has used as excellent supercapacitor electrodes.
- Fascinatingly, the NC-ECN electrode exhibits a maximum specific capacitance of 596.8 F g−1 while NC electrode reached the capacitance of up to 368 F g−1.
- Notably, the fabricated supercapacitors exhibit excellent cycling stability.

A facile hydrothermal method is invoked for direct template-free synthesis of nickel cobaltite (NiCo2O4)-decorated porous carbon nanosheets using polymeric 3,4-ethylenedioxythiophene (EDOT) as the precursor. The nanocomposite materials (named as NC-ECN) so fabricated were characterized by a variety of different techniques (viz. SEM/TEM, XPS, EDX etc.). These novel NC-ECN nanocomposites, which exhibit flower-like morphology and excellent electrochemical properties such as good electric conductivity and redox properties, high specific capacitance, excellent rate capability and cyclability, are shown to be desirable for high-performance pseudosupercapacitor applications. On the basis of cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) measurements, the NC-ECN modified electrode was found to exhibit a maximum specific capacitance of 596.8 F g−1 measured at a current density of 2 A g−1 over an aqueous 6.0 M KOH electrolyte solution. Moreover, the fabricated supercapacitor is also found to have excellent cyclability, retaining ca. 98% of its capacitance over more than 3,000 charge-discharge cycles. The excellent pseudocapacitive performances observed for the NC-ECN electrode results are attributed to the synergistic effect of redox characteristics of binary metal oxide and the improved electric conductivity of the porous ECN carbon nanosheets, which effectively enhances kinetics of ion diffusion.

Schematic illustration of the direct hydrothermal procedures for the preparations of NC and NC-ECN samples for supercapacitor application.180

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electrochimica Acta - Volume 247, 1 September 2017, Pages 288-295
نویسندگان
, , , , , , ,