کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
647852 1457182 2012 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Experimental investigation of submerged single jet impingement using Cu–water nanofluid
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله
Experimental investigation of submerged single jet impingement using Cu–water nanofluid
چکیده انگلیسی

Jet impingement cooling is a vital technique for thermal management of electronic devices of high-heat-flux by impinging fluid on a heater surface due to its high local heat transfer rates. In this paper, two types of Cu–water nanofluids (Cu particles with 25 nm diameter or 100 nm) are introduced into submerged single jet impingement cooling system as the working fluid. The heat transfer features of the nanofluids were experimentally investigated. The effects of the nanoparticle concentration, Reynolds number, nozzle-to-plate distance, fluid temperature, and nanoparticle diameter on the heat transfer performances of the jet impingement of nanofluids are discussed. The experimental results show that the suspended nanoparticles remarkably increase the convective heat transfer coefficient of the base fluid. The convective heat transfer coefficient of Cu–water nanofluid with the volume fraction of 3.0% has 52% higher than the pure water. The experiments also revealed that the suspended nanoparticles brought almost no extra addition of pressure drop in both submerged single jet impingement. In addition, by considering the effects of the suspended nanoparticles as well as the condition of impinging jet, a new heat transfer correlation of nanofluids for the submerged single jet impingement has been proposed.


► Cu–water nanofluids are introduced into submerged single jet impingement.
► The affecting parameters on the heat transfer performances of nanofluids are discussed.
► New heat transfer correlation of nanofluid for single jet impingement is proposed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Thermal Engineering - Volume 36, April 2012, Pages 426–433
نویسندگان
, , ,