کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6540092 | 158852 | 2016 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Development and evaluation of a fuzzy logic classifier for assessing beef cattle thermal stress using weather and physiological variables
ترجمه فارسی عنوان
توسعه و ارزیابی یک طبقه بندی منطقی فازی برای ارزیابی استرس حرارتی گاو گوشتی با استفاده از متغیرهای هوا و فیزیولوژیکی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
دامداری دقیق، محاسبات نرم، ترموگرافی مادون قرمز، رفاه حیوانات، اندازه گیری غیر تهاجمی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
This research was carried out to develop a fuzzy logic classifier that integrates both weather and animal factors to assess individually the level of thermal stress in feedlot finishing cattle. An experiment was performed with two groups of Nellore feedlot finishing cattle for the acquisition of weather and physiological data including the average of surface temperature in different parts of the animal body using infrared thermography. A statistical analysis of the data was applied to seek the best correlation between the weather and physiological measurements and the infrared thermography (IRT) measurements in different parts of the animal body surface and to orient the construction of membership functions. A knowledge-based system was constructed from rules that associate the memberships of the input variables dry bulb temperature, wet bulb temperature and front surface infrared temperature which were found to be suitable for predicting the rectal temperature. Predicted rectal temperature was rated for the level of thermal stress and compared with the real rectal temperature and a traditional temperature-humidity index. The results indicated little correspondence between the fuzzy classifier and temperature-humidity index (29.3%), but the average rectal temperature value during the day showed great consistency (83.2%) between the fuzzy classifier and animal's response. In addition, the IRT measurements allowed an accurate assessment and classification of the individual thermal stress of animals in the same day. The proposed fuzzy classifier resulted in better estimates of the thermal stress level when compared to the traditional temperature-humidity index and fuzzy-based systems previously developed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers and Electronics in Agriculture - Volume 127, September 2016, Pages 176-183
Journal: Computers and Electronics in Agriculture - Volume 127, September 2016, Pages 176-183
نویسندگان
Rafael Vieira de Sousa, Tatiana Fernanda Canata, Paulo Roberto Leme, Luciane Silva Martello,